Local Expression of Indoleamine 2,3 Dioxygenase in Syngeneic Fibroblasts Significantly Prolongs Survival of an Engineered Three-Dimensional Islet Allograft
نویسندگان
چکیده
OBJECTIVE The requirement of systemic immunosuppression after islet transplantation is of significant concern and a major drawback to clinical islet transplantation. Here, we introduce a novel composite three-dimensional islet graft equipped with a local immunosuppressive system that prevents islet allograft rejection without systemic antirejection agents. In this composite graft, expression of indoleamine 2,3 dioxygenase (IDO), a tryptophan-degrading enzyme, in syngeneic fibroblasts provides a low-tryptophan microenvironment within which T-cells cannot proliferate and infiltrate islets. RESEARCH DESIGN AND METHODS Composite three-dimensional islet grafts were engineered by embedding allogeneic mouse islets and adenoviral-transduced IDO-expressing syngeneic fibroblasts within collagen gel matrix. These grafts were then transplanted into renal subcapsular space of streptozotocin diabetic immunocompetent mice. The viability, function, and criteria for graft take were then determined in the graft recipient mice. RESULTS IDO-expressing grafts survived significantly longer than controls (41.2 +/- 1.64 vs. 12.9 +/- 0.73 days; P < 0.001) without administration of systemic immunesuppressive agents. Local expression of IDO suppressed effector T-cells at the graft site, induced a Th2 immune response shift, generated an anti-inflammatory cytokine profile, delayed alloantibody production, and increased number of regulatory T-cells in draining lymph nodes, which resulted in antigen-specific impairment of T-cell priming. CONCLUSIONS Local IDO expression prevents cellular and humoral alloimmune responses against islets and significantly prolongs islet allograft survival without systemic antirejection treatments. This promising finding proves the potent local immunosuppressive activity of IDO in islet allografts and sets the stage for development of a long-lasting nonrejectable islet allograft using stable IDO induction in bystander fibroblasts.
منابع مشابه
Local expression of indoleamine 2,3 dioxygenase in syngeneic fibroblasts significantly prolongs survival of an engineered three-dimensional islets allograft
This is an uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online...
متن کاملIndoleamine 2,3-Dioxygenase and Immunological Tolerance during Pregnancy
Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed by a variety of cells and tissues such as macrophages, dendritic cells, cells of the endocrine system and by the placenta. IFN- γ is the main inducer of this enzyme. IDO acts as an important defense mechanism of innate immunity against pathogens. It also has tumor suppressive activity and prolong...
متن کاملImmuno-Regulatory Function of Indoleamine 2,3 Dioxygenase through Modulation of Innate Immune Responses
Successful long-term treatment of type-1 diabetes mainly relies on replacement of β-cells via islet transplantation. Donor shortage is one of the main obstacles preventing transplantation from becoming the treatment of choice. Although animal organs could be an alternative source for transplantation, common immunosuppressive treatments demonstrate low efficacy in preventing xenorejection. Immun...
متن کاملIndoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes.
Indoleamine 2,3-dioxygenase (IDO) catalyzes the breakdown of the amino acid tryptophan into kyneurenine. It has been shown that IDO production by placental trophoblasts prevents the attack of maternal T-cells activated in response to the paternal HLA alleles expressed by the tissues of the fetus. In this article, we show that adenoviral gene transfer of IDO to pancreatic islets can sufficiently...
متن کاملIndoleamine 2,3-dioxygenase gene transfer prolongs cardiac allograft survival.
Cells that express indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme in the catabolism of tryptophan, suppress T cell responses and promote immunological tolerance. However, their role in solid organ transplantation is incompletely understood. We analyzed T cell responses to allogeneic dendritic cells (DCs) genetically modified to express the gene encoding IDO in vitro and IDO gene tr...
متن کامل